Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 17(6): 965-981, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38342302

RESUMO

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS: Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS: Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS: Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.

2.
Int Immunopharmacol ; 129: 111660, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350357

RESUMO

BACKGROUND: Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE: This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS: hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS: hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION: Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.


Assuntos
Fluoresceínas , Interleucina-10 , Células-Tronco Mesenquimais , Succinimidas , Camundongos , Humanos , Animais , Interleucina-10/farmacologia , Âmnio , Isoproterenol , Remodelação Ventricular , Macrófagos , Inflamação/induzido quimicamente , Inflamação/terapia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Fibrose , Cardiomegalia
3.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958991

RESUMO

Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Sirtuína 3 , Animais , Camundongos , Apoptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Estresse Oxidativo , Piroptose , Sirtuína 3/metabolismo , Volume Sistólico , Função Ventricular Esquerda
4.
ACS Appl Bio Mater ; 6(11): 4988-4997, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862245

RESUMO

The vascular endothelium serves as a physical barrier between the circulating blood and surrounding tissue and acts as a critical regulator of various physiological processes. In vitro models involving vasculature rely on the maintenance of the endothelial barrier function. In this study, we fabricated 2D aligned nanofibrous membranes with distinct pore sizes via electrospinning and investigated the effect of membrane pore size on endothelial barrier function. Our results demonstrated that the use of the nanofibrous membranes promoted the formation of a tight vascular endothelium and sustained barrier function for over one month in comparison with conventional transwell setups. Moreover, the examination of the nucleocytoplasmic localization of yes-associated protein (YAP) in the endothelial cells indicated that nanofibrous membrane promoted YAP expression and its nuclear localization, critical to endothelial barrier function. Furthermore, the comparison of permeability between random and aligned nanofibrous membranes underscored the importance of pore size in preserving barrier function. Our findings offer a valuable strategy for creating more physiologically relevant in vitro vascular models and contribute to the understanding of endothelial barrier formation and maintenance mechanisms.


Assuntos
Células Endoteliais , Nanofibras , Proteínas de Membrana
5.
Int Immunopharmacol ; 124(Pt B): 110875, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742368

RESUMO

BACKGROUND: Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE: We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS: Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS: Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION: Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Rinite Alérgica , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Rinite Alérgica/terapia , Rinite Alérgica/metabolismo , Hipóxia/terapia , Hipóxia/metabolismo , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo
6.
J Cardiovasc Pharmacol ; 82(2): 93-103, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314134

RESUMO

ABSTRACT: Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.


Assuntos
Ubiquitina-Proteína Ligases , Doenças Vasculares , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas , Doenças Vasculares/tratamento farmacológico
7.
Eur J Pharmacol ; 946: 175666, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944380

RESUMO

Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.


Assuntos
Endotoxemia , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/complicações , Endotoxemia/metabolismo , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Macrófagos , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/induzido quimicamente , Citocinas/metabolismo
8.
Biochem Cell Biol ; 101(4): 303-312, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927169

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células Endoteliais , Piroptose/fisiologia
9.
Biol Pharm Bull ; 46(1): 52-60, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288961

RESUMO

Vitamin K, a necessary nutritional supplement for human, has been found to exhibit anti-inflammatory activity. In the present study, we investigated the effects of vitamin K family on lipopolysaccharide (LPS) plus nigericin induced pyroptosis and explored the underlying mechanism of its action in THP-1 monocytes. Results showed that vitamin K3 treatment significantly suppressed THP-1 pyroptosis, but not vitamin K1 or K2, as evidenced by increased cell viability, reduced cellular lactate dehydrogenase (LDH) release and improved cell morphology. Vitamin K3 inhibited NLRP3 expression, caspase-1 activation, GSDMD cleavage and interleukin (IL)-1ß secretion in pyrophoric THP-1 cells. In addition, vitamin K3 inhibited the pro-inflammatory signaling pathways including nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK). Vitamin K3 treatment also attenuated tissue damage and reduced serum LDH, IL-1ß and IL-6 levels in LPS-induced systemic inflammation of mice. The reduced myeloperoxidase (MPO) activityand F4/80 expression indicated that vitamin K3 effectively reduced the infiltration of neutrophils and macrophages. Moreover, NLRP3 expression in monocytes/macrophages were also decreased in vitamin K3-treatedmice after LPS challenge. These findings suggest that vitamin K3 potently alleviates systemic inflammation and organ injury via inhibition of pyroptosis in monocytes and may serve as a novel therapeutic strategy for patients with inflammatory diseases.


Assuntos
Sistema de Sinalização das MAP Quinases , NF-kappa B , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Vitamina K 3/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Células THP-1 , Lipopolissacarídeos/farmacologia , Inflamação
10.
Stem Cell Res Ther ; 13(1): 224, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659360

RESUMO

BACKGROUND: Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis. METHODS: hAMSCs were transplanted into carbon tetrachloride (CCl4)-induced liver fibrosis mice via tail vein, and the effects of hAMSCs on hepatic fibrosis were assessed. The effects of hAMSCs and hAMSCs conditional medium (CM) on the activation of hepatic stellate cells (HSCs) were investigated in vivo and in vitro. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may inhibit the activation of HSCs. Finally, the underlying mechanisms were explored by assessing IGF-1R/PI3K/AKT and GSK3ß/ß-catenin signaling pathways in the activated HSCs (LX-2) with hAMSCs and hAMSCs transfected with corresponding siRNAs. RESULTS: Our results showed that hAMSCs possessed the characterizations of mesenchymal stem cells. hAMSCs significantly reduced liver fibrosis and improved liver function in mice by inhibiting HSCs activation in vivo. Both hAMSCs and hAMSC-CM remarkably inhibited the collagen deposition and activation of LX-2 cells in vitro. Antibody array assay showed that insulin-like growth factor binding protein-3 (IGFBP-3), Dickkopf-3 (DKK-3), and Dickkopf-1 (DKK-1) were highly expressed in the co-culture group and hAMSC-CM group compared with LX-2 group. Western blot assay demonstrated that IGFBP-3, DKK-3, and DKK-1 derived from hAMSCs inhibit LX-2 cell activation through blocking canonical Wnt signaling pathway. CONCLUSIONS: Our results demonstrated that IGFBP-3, Dkk3, and DKK-1 secreted by hAMSCs attenuated liver fibrosis in mice through inhibiting HSCs activation via depression of Wnt/ß-catenin signaling pathway, suggesting that hAMSCs or hAMSC-CM provides an alternative therapeutic approach for the treatment of liver fibrosis.


Assuntos
Células-Tronco Mesenquimais , Via de Sinalização Wnt , Âmnio , Animais , Células Estreladas do Fígado/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo
11.
Signal Transduct Target Ther ; 7(1): 148, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513381

RESUMO

Endothelial activation plays an essential role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. Here, we reported that TRIM47, an E3 ubiquitin ligase of the tripartite motif-containing protein family, was highly expressed in vascular endothelial cells. TRIM47-deficient mice were effectively resistant to lipopolysaccharide (LPS)-induced acute lung injury and death by attenuating pulmonary inflammation. TRIM47 was upregulated during TNFα-induced endothelial activation in vitro. Knockdown of TRIM47 in endothelial cells inhibited the transcription of multiple pro-inflammatory cytokines, reduced monocyte adhesion and the expression of adhesion molecules, and suppressed the secretion of IL-1ß and IL-6 in endothelial cells. By contrast, overexpression of TRIM47 promoted inflammatory response and monocyte adhesion upon TNFα stimulation. In addition, TRIM47 was able to activate the NF-κB and MAPK signaling pathways during endothelial activation. Furthermore, our experiments revealed that TRIM47 resulted in endothelial activation by promoting the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway. Taken together, our studies demonstrated that TRIM47 as a novel activator of endothelial cells, promoted LPS-induced pulmonary inflammation and acute lung injury through potentiating the K63-linked ubiquitination of TRAF2, which in turn activates NF-κB and MAPK signaling pathways to trigger an inflammatory response in endothelial cells.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Células Endoteliais/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/genética , NF-kappa B/metabolismo , Pneumonia/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Fator de Necrose Tumoral alfa/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Front Oncol ; 12: 853935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402260

RESUMO

Tripartite motif containing 65 (TRIM65) is an E3 ubiquitin ligase that has been implicated in a variety of cellular processes as well as tumor progression, but its biological role and the underlying mechanism in cervical cancer is unclear. Here, we reported that TRIM65 expression in human cervical cancer tissues was significantly higher than that in the adjacent normal cervical tissues, and TRIM65 knockdown enhanced autophagic flux and cell apoptosis, but not cell cycle, to dramatically inhibit the proliferation and migration of cervical cancer cells. Furthermore, our experiments showed that TRIM65 exhibited oncogenic activities via directly targeting p53, a tumor suppressor and a common upsteam regulator between autophagy and apoptosis, promoting ubiquitination and proteasomal degradation of p53. Taken together, our studies demonstrated that TRIM65 knockdown promotes cervical cancer cell death through enhancing autophagy and apoptosis, suggesting that TRIM65 may be a potential therapeutic target for cervical cancer clinically.

13.
Int J Biol Sci ; 17(15): 4305-4315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803499

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. CD38 was initially identified as a lymphocyte surface antigen and then has been found to exist in a variety of cell types. Our previous studies showed that CD38-/- mice were resistant to high-fat diet (HFD)-induced obesity. However, the role and mechanism of CD38 in HFD-induced NAFLD is still unclear. Here, we reported that CD38-/- mice significantly alleviated HFD-induced hepatic steatosis. HFD or oleic acid (OA) remarkably increased the mRNA and protein expressions of CD38 in mouse hepatic tissues and primary hepatocytes or hepatic cell lines in vitro and in vivo, suggesting that CD38 might play a role in HFD-induced hepatic steatosis. We observed that CD38 deficiency markedly decreased HFD- or OA-induced the lipid accumulation and oxidative stress in CD38-/- livers or primary hepatocytes, respectively. In contrast, overexpression of CD38 in Hep1-6 cells aggravated OA-induced lipid accumulation and oxidative stress. Furthermore, CD38 deficiency markedly inhibited HFD- or OA-induced the expressions of NOX4, and increased the expression of PPARα, CPT1, ACOX1 and SOD2 in liver tissue and hepatocytes from CD38-/- mice, indicating that CD38 deficiency-mediated the enhancement of fatty acid oxidation and the inhibition of oxidative stress contributed to protecting NAFLD. More importantly, Ex527 (Sirt1 inhibitor) and 3-TYP (Sirt3 inhibitor) significantly enhanced OA-induced lipid accumulation and oxidative stress in CD38-/- primary hepatocytes, suggesting that the anti-lipid accumulation of CD38 deficiency might be dependent on NAD/Sirtuins-mediated enhancement of FAA ß-oxidation and suppression of oxidative stress in hepatocytes. In conclusion, we demonstrated that CD38 deficiency protected mice from HFD-induced NAFLD by reducing lipid accumulation and suppressing oxidative stress via activating NAD/Sirtuins signaling pathways.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Sirtuínas/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NAD/genética , Hepatopatia Gordurosa não Alcoólica/genética , Estresse Oxidativo , Transdução de Sinais , Sirtuínas/genética
14.
Stem Cell Res Ther ; 12(1): 501, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507619

RESUMO

BACKGROUND: Hyperpigmentation of skin is caused by an imbalance between the melanosome/melanin synthesis in melanocytes and the melanosome/melanin degradation in keratinocytes. Although studies showed that stem cells play a role in hypopigmentation, the underlying mechanisms are far not elucidated. Human amniotic stem cells (hASCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) were considered to be a promising cell source for stem cells-based therapy of many diseases clinically due to their pluripotent potential, no tumorigenesis and immunogenicity, no ethical issues, and potent paracrine effects. Here, we reported that both hASCs and their conditional medium (CM) had a potent anti-hyperpigmentation in skin in vivo and in vitro. METHODS: hAESCs and hAMSCs were identified by RT-PCR, flow cytometric analysis and immunofluorescence. Effects of hASCs and hASC-CM on pigmentation were evaluated in B16F10 cells stimulated with α-melanocyte-stimulating hormone (α-MSH), and mouse ears or human skin substitutes treated with ultraviolet radiation B (UVB). Expressions of the key proteins related with melanogenesis and autophagic flux were detected by western blot in B16F10 cells for further exploring the effects and the underlying mechanisms of hAESC-CM and hAMSC-CM on melanogenesis and melanosome degradation. The hAMSCs exosomes-derived miRNAs were determined by sequencing. RT-PCR, western blot, melanin content analysis and luciferase activity assay were used to determine the hypopigmentation of miR-181a-5p and miR-199a. RESULTS: In our study, we observed that both hASCs and their CM significantly alleviated the α-MSH in B16F10 cells or UVB-induced hyperpigmentation in mouse ears or human skin substitutes by suppressing melanin synthesis and promoting melanosome degradation in vivo and in vitro. Furthermore, we demonstrated that miR-181a-5p and miR-199a derived from hASCs exosomes remarkably inhibited melanogenesis by suppressing MITF (microphthalmia-associated transcription factor) which is a master regulator for governing melanogenesis and promoting melanosome degradation through activating autophagy, respectively. CONCLUSIONS: Our studies provided strong evidence that the conditional medium and exosomes derived from hAMSCs inhibit skin hyperpigmentation by suppressing melanogenesis and promoting melanosome degradation, indicating that the hASCs exosomes or their released microRNAs might be as reagents for cell-free therapy in hyperpigmented disorders clinically.


Assuntos
Hiperpigmentação , MicroRNAs , Animais , Humanos , Melanócitos , Melanossomas , Camundongos , MicroRNAs/genética , Células-Tronco , Raios Ultravioleta
15.
J Virol ; 95(23): e0139621, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549987

RESUMO

Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiorgan failure in patients with coronavirus disease 2019 (COVID-19). However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved in endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through Toll-like receptor 2 (TLR2)/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkably, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), HUB1-CoV, and influenza virus H1N1 did not activate endothelial cells. These findings are consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy and suggests that simvastatin, an FDA-approved lipid-lowering drug, may help prevent the pathogenesis and improve the outcome of COVID-19 patients. IMPORTANCE Coronavirus disease 2019 (COVID-19), caused by the betacoronavirus SARS-CoV-2, is a worldwide challenge for health care systems. The leading cause of mortality in patients with COVID-19 is hypoxic respiratory failure from acute respiratory distress syndrome (ARDS). To date, pulmonary endothelial cells (ECs) have been largely overlooked as a therapeutic target in COVID-19, yet emerging evidence suggests that these cells contribute to the initiation and propagation of ARDS by altering vessel barrier integrity, promoting a procoagulative state, inducing vascular inflammation and mediating inflammatory cell infiltration. Therefore, a better mechanistic understanding of the vasculature is of utmost importance. In this study, we screened the SARS-CoV-2 viral proteins that potently activate human endothelial cells and found that nucleocapsid protein (NP) significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Our results provide insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , SARS-CoV-2 , Transdução de Sinais , Sinvastatina/farmacologia , COVID-19/virologia , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo
16.
Stem Cell Res Ther ; 12(1): 364, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174964

RESUMO

BACKGROUND: Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. METHODS: The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid ß oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. RESULTS: hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. CONCLUSION: Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.


Assuntos
Dieta Hiperlipídica , Células-Tronco Mesenquimais , Células 3T3-L1 , Adipogenia , Animais , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/terapia
17.
J Cell Mol Med ; 25(12): 5497-5510, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955151

RESUMO

Studies showed that the increase of myeloid-derived suppressor cells (MDSCs) in tumour microenvironment is closely related to the resistant treatment and poor prognosis of metastatic breast cancer. However, the effect of tumour-derived exosomes on MDSCs and its mechanism are not clear. Here, we reported that breast cancer cells (4T1)-secreted exosomes (BCC-Ex) were able to differentiate bone marrow cells into MDSCs and significantly inhibited the proliferation of T lymphocytes to provide an immunosuppressive microenvironment for cancer cells in vivo and in vitro. The number of MDSCs in bone marrow and spleen of 4T1 tumour-bearing mice and BCC-Ex infused mice was significantly higher than that of normal mice, whereas the number of T lymphocytes in spleen was significantly decreased. In addition, BCC-Ex markedly promoted the differentiation of MDSCs from bone marrow cells or bone marrow cells derived macrophages, seen as the increased expressions of MDSCs-related functional proteins Arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). Furthermore, BCC-Ex significantly down-regulated the expressions of chemokine receptor CXCR4 and markedly up-regulated the levels of inflammatory cytokines IL-6 and IL-10 in bone marrow cells and macrophages and remarkably inhibited the division and proliferation of T cells. Importantly, CXCR4 agonist, CXCL12, could reverse the function of BCC-Ex, indicating that BCC-Ex-induced MDSCs might be dependent on the down-regulation of CXCR4. Western blot showed that BCC-Ex significantly promoted the phosphorylation of STAT3 in bone marrow cells, resulting in the inhibitions of the proliferation and apoptosis of bone marrow cells, and the aggravation of the differentiation of bone marrow cells into MDSCs.


Assuntos
Células da Medula Óssea/patologia , Neoplasias da Mama/patologia , Exossomos/metabolismo , Células Supressoras Mieloides/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores CXCR4/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Diferenciação Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/imunologia , Microambiente Tumoral
18.
bioRxiv ; 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33594363

RESUMO

Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the SARS-CoV-2 viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved with endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkablely, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, MERS-CoV, HUB1-CoV and influenza virus H1N1 did not affect endothelial activation. These findings are well consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.

19.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478081

RESUMO

Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.


Assuntos
Âmnio/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
20.
Int J Antimicrob Agents ; 57(3): 106277, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33434677

RESUMO

Vaginal dysbiosis is characterised by a disturbed vaginal microbiota and is associated with various gynaecological diseases. Owing to its high recurrence rate, there is an urgent need for the development of effective therapeutic agents. In the present study, a vaginal dysbiosis model was developed to study the effect of vaginal microbiota transplantation (VMT) or probiotic combination (containing Lactobacillus helveticus, Lactobacillus crispatus, Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus salivarius) on vaginal dysbiosis. Our results indicated that VMT or probiotic combination significantly reduced bacterial-induced inflammation (infiltration of neutrophils, lymphocytes and monocytes) in the uterine wall and the enrichment of pro-inflammatory cytokines [interleukin-1ß (IL-1ß) and tumour necrosis factor-alpha (TNFα)] in vaginal tissue, and restored the disturbed vaginal microbiota to normal levels (increased numbers of Lactobacillus and decreased numbers of Enterobacter and Enterococcus), thus it should be beneficial for avoiding the recurrence of vaginal dysbiosis. Therefore, VMT or probiotic combination might be an effective agent for the treatment of bacterial-induced vaginosis.


Assuntos
Disbiose/terapia , Microbiota , Probióticos/uso terapêutico , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/terapia , Adulto , Animais , Biodiversidade , Citocinas/metabolismo , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Vagina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...